# Teaching Programming to Mathematical Scientists 

Robert M. Corless ${ }^{1}$ \& Eunice Y.S. Chan ${ }^{2}$

${ }^{1}$ The Ontario Research Centre for Computer Algebra, The Rotman Institute of Philosophy, and The School of Mathematical and Statistical Sciences, Western University, Canada
The David R. Cheriton School of Computer Science, University of Waterloo, Canada
${ }^{2}$ Department of Anesthesia and Perioperative Medicine, MEDICI Centre, Schulich School of Medicine and Dentistry, Western University, Canada

## We live in a rough world



Figure 1: An infinite number of infinity symbols
"The existence of these patterns [fractals] challenges us to study forms that Euclid leaves aside as being formless, to investigate the morphology of the amorphous." (Benoit B. Mandelbrot, The Fractal Geometry of Nature, 1983, p. 1)

## Context

- Teaching Computational Mathematics is increasingly important (Data Science, Visualization, Machine Learning, ...)
- This is difficult because computational mathematics involves several things at once: mathematics, programming, complexity, and numerical stability, because of the compromises needed for efficiency.
- Incorporating new things means removing old things because we have only finite time to teach, and the students are learning other things as well.
- "A spoon-ful of sugar helps the medicine go down"


## Fractals are sweet



Figure 2: A Bohemian Example: All eigenvalues computed numerically by Maple of all 4096 seven by seven skew-symmetric bidiagonal matrices with entries from $\{1, i, 1+i, 1-i\}$. See bohemianmatrices.com

## Pass the Parcel (avanzar el paquete)

Newton's iteration is $z_{n+1}=z_{n}-F\left(z_{n}\right) / F^{\prime}\left(z_{n}\right)$. To explain this to students we play the game of "pass the parcel": given an initial function (e.g. $F(z)=z^{3}-1$ ).

- One student chooses an initial number $z_{0}$ and passes it to the next. Here $n=0$.
- The receiving student computes the next number by $z_{n+1}=z_{n}-F\left(z_{n}\right) / F^{\prime}\left(z_{n}\right)$ and passes that result to the succeeding student.
- We go around the room until the iteration converges, or we get bored, or everyone has had a chance.


## Mandelbrot polynomials

function $[p, d p]=m a n d e l p o l y(z, k)$
\% MANDELPOLY evaluates the $k^{\wedge}$ th Mandelbrot polynomial
\% and its derivative at one or more points.
\% The $k^{\wedge}$ th polynomial has degree $2^{\wedge}(k-1)$-1
\% Author PWL 2014.4.28 Modified RMC 2020.2.27

$$
\begin{aligned}
& d p=\operatorname{zeros}(\operatorname{size}(z)) ; \\
& p=\operatorname{zeros}(\operatorname{size}(z)) ; \\
& \text { for } i=1: k-1 \\
& d p=p \cdot \wedge^{\wedge} 2+2 * z \cdot * p \cdot * d p ; \\
& p=z \cdot * p \cdot{ }^{\wedge} 2+1 ;
\end{aligned}
$$

end

## The sixth iterate, $p_{6}(x)$, for real $x$



Figure 3: Graph of $p_{6}(x)$ and its derivative (blue) $p_{6}^{\prime}(x)$ where $p_{0}(x)=0$ and $p_{n+1}(x)=x p_{n}^{2}(x)+1$.

## Newton Fractals



Figure 4: Newton fractal of $p_{6}(z)$ (generated using Python)

## Student-generated fractals



Figure 5: Forty student-generated fractals

## Challenges from IEEE floats

- "Admit, for instance, the existence of a minimum magnitude, and you will find that the minimum which you have introduced, small as it is, causes the greatest truths of mathematics to totter." - Aristotle
- Floats are not associative: $a+(b+c) \neq(a+b)+c$ necessarily. For instance $-M+(M+1)=0$ while $(-M+M)+1=1$ if $M=3.14 \cdot 10^{17}$.
- This (and other features) break students' models of how the world works.
- We have to enable students to deal with floats.


## Mathematical Notions Strengthened by Programming

Several mathematical notions are strengthened by these exercises.

- We use mathematical induction to prove correctness of the automatic differentiation of the Mandelbrot polynomials
- The analysis of IEEE floats uses the IEEE guarantees $(f l(x$ op $y)=(x$ op $y)(1+\delta)$ for some $|\delta| \leq \mathbf{u}$ where $\mathbf{u}$ is the unit roundoff, $2^{-53}$ for double precision)
- Practice with functions is always useful
- Simply working with visualizations improves people's feel for geometry.


## Reference Papers

Chauvenet prize-winning papers

1. Wilkinson, James H. "The perfidious polynomial." Studies in numerical analysis 24 (1984): 1-28.
2. Olds, C. D. "The simple continued fraction expansion of e." The American Mathematical Monthly 77.9 (1970): 968-974.
3. Davis, Philip J. "Leonhard Euler's integral: A historical profile of the Gamma function: In memoriam: Milton Abramowitz." The American Mathematical Monthly 66.10 (1959): 849-869.

## Reference Texts and Videos

1. Moler, Cleve B. Numerical Computing with MATLAB: Revised Reprint. Vol. 87. Siam, 2008.
2. Higham, Desmond J., and Nicholas J. Higham. MATLAB guide. Society for Industrial and Applied Mathematics, 2016.
3. MIT OpenCourseWare: Gil Strang and Cleve Moler

## References

- Chan, Eunice Y.S., and Robert M. Corless. "A random walk through experimental mathematics." arXiv preprint arXiv:1801.05423 (2018). (In press)
- Corless, Robert M. "Computer-mediated thinking." Proceedings of Technology in Mathematics Education (2004).
- Frame, Michael, and Benoit B. Mandelbrot. Fractals, graphics, and mathematics education. No. 58. Cambridge University Press, 2002.
- Li, Ao, and Robert M. Corless. "Revisiting Gilbert Strang's A chaotic search for i." ACM Communications in Computer Algebra 53.1 (2019): 1-22.

Thank You

## ¡Time for Questions!

