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We live in a rough world

Figure 1: An infinite number of infinity symbols

“The existence of these patterns [fractals] challenges us to study
forms that Euclid leaves aside as being formless, to investigate the
morphology of the amorphous.” (Benoit B. Mandelbrot, The Fractal
Geometry of Nature, 1983, p. 1)
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Context

• Teaching Computational Mathematics is increasingly important
(Data Science, Visualization, Machine Learning, . . .)

• This is difficult because computational mathematics involves
several things at once: mathematics, programming, complexity,
and numerical stability, because of the compromises needed for
efficiency.

• Incorporating new things means removing old things because
we have only finite time to teach, and the students are learning
other things as well.

• “A spoon-ful of sugar helps the medicine go down”
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Fractals are sweet

Figure 2: A Bohemian Example: All eigenvalues computed numerically by
Maple of all 4096 seven by seven skew-symmetric bidiagonal matrices with
entries from {1, i, 1+ i, 1− i}. See bohemianmatrices.com 3

http://bohemianmatrices.com


Pass the Parcel (avanzar el paquete)

Newton’s iteration is zn+1 = zn − F(zn)/F′(zn). To explain this to
students we play the game of “pass the parcel”: given an initial
function (e.g. F(z) = z3 − 1).

• One student chooses an initial number z0 and passes it to the
next. Here n = 0.

• The receiving student computes the next number by
zn+1 = zn − F(zn)/F′(zn) and passes that result to the succeeding
student.

• We go around the room until the iteration converges, or we get
bored, or everyone has had a chance.
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Mandelbrot polynomials

function [p,dp]=mandelpoly(z,k)
% MANDELPOLY evaluates the k^th Mandelbrot polynomial
% and its derivative at one or more points.
% The k^th polynomial has degree 2^(k-1)-1

% Author PWL 2014.4.28 Modified RMC 2020.2.27
dp = zeros(size(z));
p = zeros(size(z));
for i=1:k-1

dp = p.^2+2*z.*p.*dp;
p = z.*p.^2+1;

end
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The sixth iterate, p6(x), for real x

Figure 3: Graph of p6(x) and its derivative (blue) p′6(x) where p0(x) = 0 and
pn+1(x) = xp2n(x) + 1.
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Newton Fractals

Figure 4: Newton fractal of p6(z) (generated using Python)
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Student-generated fractals

Figure 5: Forty student-generated fractals
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Challenges from IEEE floats

• “Admit, for instance, the existence of a minimum magnitude, and
you will find that the minimum which you have introduced,
small as it is, causes the greatest truths of mathematics to
totter.” — Aristotle

• Floats are not associative: a+ (b+ c) ̸= (a+ b) + c necessarily.
For instance −M+ (M+ 1) = 0 while (−M+M) + 1 = 1 if
M = 3.14 · 1017.

• This (and other features) break students’ models of how the
world works.

• We have to enable students to deal with floats.
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Mathematical Notions Strengthened by Programming

Several mathematical notions are strengthened by these exercises.

• We use mathematical induction to prove correctness of the
automatic differentiation of the Mandelbrot polynomials

• The analysis of IEEE floats uses the IEEE guarantees
(fl(x op y) = (x op y)(1+ δ) for some |δ| ≤ u where u is the unit
roundoff, 2−53 for double precision)

• Practice with functions is always useful
• Simply working with visualizations improves people’s feel for
geometry.
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Thank You

¡Time for Questions!
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