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Balacheff revisited: Learner modeling

Balacheff, 1993: “There is a gap between the meaning the
learner has constructed and the intended meaning. It is
essential that the machine can diagnose this gap and that it
can provide adequate feedback to students.”1

1Balacheff, N. (1993). Artificial intelligence and mathematics education:
Expectations and questions. In 14th biennal of the australian association of
mathematics teachers, Perth, Australia.
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Balacheff revisited: Learner modeling

Several solutions are explored concerning this problem2:

I The implementation of a catalogue of errors: the machine try to
match the gap it observes at the interface to errors a priori
described in a catalogue. It then provides some ad hoc feedback .

I Error generation: a model is implemented which allows the
reconstruction of conceptions which can be the source of the
errors.

I Error reconstruction: using some machine learning algorithms,
the machine attempts to automatically deduce mal-rules which
might “explain” the observed gaps.

2Balacheff, N. (1993). Artificial intelligence and mathematics education:
Expectations and questions. 14th biennal of the australian association of
mathematics teachers, Perth, Australia.
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Motivation

I Machine learning is a sub-field of artificial intelligence in
which several breakthroughs have been made in the past 10
years:
I computer vision;
I natural language understanding;
I speech recognition;
I . . .

I We study the application of machine learning to
mathematics education and learner modeling, in particular
problems related to mathematical reasoning.
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A definition

“Machine Learning is the study of computer algorithms that
improve automatically through experience.“ – Tom Mitchell

I “improve”→ requires an evaluation metric
I “automatically”→ without intervention
I “through experience”→ by processing examples / data
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Machine Learning

I Program logic is not explicitly modeled. Rather, framework
to learn model specifics from data.

I Pattern recognition and more: primitives / building blocks
include image analysis, audio analysis, but also sequence
models, synthesis.
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Current state of ML
Major theories of the structure of human intelligence organize
cognitive abilities in a hierarchical fashion3.

State-of-the-art machine learning achieves task-specific skills.

3Chollet, F. (2019). On the measure of intelligence. arXiv preprint
arXiv:1911.01547.
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Deep Learning
I A sub-field of machine learning in which the networks have

a large amount of layers (from 5 to hundreds).
I Allows to model complex input-output relations.
I Requires lots of data and computational power.

Improvements are often engineering feats.
I Deep learning “revolution” started around 20124.
I Past 2 years: growing interest in mathematical reasoning.

4Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. Advances in neural
information processing systems.
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Mathematical Reasoning

Target problems:
I Solve symbolic equations.
I Solve word problems.
I Automated proving.
I ...

Problem: ML and NN are “soft” algorithms that are best at
approximation, while mathematical reasoning requires “hard”,
precise algorithms.
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Neural networks for symbolic reasoning

Lample, G., & Charton, F. (2019). Deep learning for symbolic
mathematics. arXiv preprint arXiv:1912.01412:

I Treats complex
equations like
sentences in a
language.
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Neural networks for symbolic reasoning

I Motivation: humans rely on some kind of intuition for
symbolic mathematics.

I E.g. if an expression is of the form yy ′(y2 + 1)−1/2 suggests
that its primitive will contain

√
y2 + 1.

I Architecture: seq2seq transformer model with eight
attention heads and six layers.

I Trained on data set of more than 100M paired equations
and solutions (generated).
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Neural networks for symbolic reasoning

Equation Solution5

y ′ = 16x3−42x2+2x
(−16x8+112x7−204x6+28x5−x4+1)1/2 y = sin−1(4x4 − 14x3 + x2)

3xy cos(x)−
√

9x2 sin(x)2 + 1y ′ + 3y sin(x) = 0 y = c exp
(
sinh−1(3x sin(x))

)
4x4yy ′′ − 8x4y ′2 − 8x3yy ′ − 3x3y ′′ − 8x2y2

− 6x2y ′ − 3x2y ′′ − 9xy ′ − 3y = 0
y = c1+3x+3 log (x)

x(c2+4x)

I Mathematica and Matlab: no solution for these problems.

I NN model: 99.7% and 81.2% success on integration problems
and 2nd order differential equations, respectively.
Mathematica: 84% and 77.2%.

5Lample, G., & Charton, F. (2019). Deep learning for symbolic mathematics.
arXiv preprint arXiv:1912.01412.
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Mathematical Reasoning in Latent Space

Lee, D., Szegedy, C., Rabe, M. N., Loos, S. M., & Bansal, K.
(2019). Mathematical reasoning in latent space. arXiv preprint
arXiv:1909.11851:
I Neural network maps mathematical formulas into a latent

space of fixed dimension.
I This network is trained by predicting whether a given rewrite

is going to succeed (i.e. returns with a new formula).
I Architecture: Combination of Graph neural networks.
I Trained on 19591 theorems from HOList database.
I First result: NN can perform several steps of approximate

reasoning in latent space.
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Word problems
Problem: Dan has 2 pens, Jessica has 4 pens. How many pens do
they have in total?
Equation: x = 4 + 2
Solution: 6

Wag, Y., Liu, X., & Shi, S. (2017). Deep neural solver for math
word problems. In Proc. of the 2017 conf. on empirical methods
in natural language processing
I Recurrent neural network (seq2seq-based, GRU+LSTM).

Wang, L., Zhang, D., Gao, L., Song, J., Guo, L., & Shen, H. T.
(2018). Mathdqn: Solving arithmetic word problems via deep
reinforcement learning. In Thirty-second AAAI conference on
artificial intelligence:
I Deep Q-network (two-layer feed-forward neural network).
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Other works (2015-2019)

I Prediction of the next step of a proof, which is executed with
a “hard” algorithm: Bansal et al., 2019; Gauthier and
Kaliszyk, 2015; Lederman et al., 2018; Loos et al., 2017.

I RNN to simplify complex symbolic expressions: Zaremba
et al., 2014.

I Verify the correctness of given symbolic entities using
tree-structured neural networks: Arabshahi et al., 2018.

I Data set of wide range of mathematical questions and
answers (symbolic, word-based, etc.): Saxton et al., 2019.
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Automated Reasoning

ML for AR: exploit statistical inference of previous proofs
(inductive reasoning) in the classical deductive reasoning used
in ATP and ITP6:

I Building systems that are helpful for developers and users.
I Premise selection techniques by learning premise

relevance. (Kühlwein, 2014 combines random-hill climbing
based strategy finding with strategy scheduling via learned
runtime predictions.)

I ML for tuning automated theorem prover to find good search
strategies.

6Kühlwein, D. A. (2014). Machine learning for automated reasoning
(Doctoral dissertation). Radboud Universiteit Nijmegen.
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Some contributions in ARCADE 2019

Schon et al., 2019:
I Treats common-sense reasoning problems
I Background knowledge graphs are combined with target

formulae and fed theorem prover. Afterwards, a machine
learning component is used to predict the relevance of
different models obtained.

Moser and Winkler, 2019
I Search for right granularity of features in machine learning

for term rewriting and theorem proving.
I Proposes more complex, structural features to learn from.
I Applied to term rewriting.
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Abstract Reasoning

I Deep learning is often mostly memorization.
I In order to learn from fewer data, generalization

capabilities are required.
I This may require basic abstract reasoning skills.
I Current work on abstract reasoning is inspired by examples

from IQ tests, similar to Raven progressive matrices7.

7Raven, J. Et al. (2003). Raven progressive matrices. Handbook of
nonverbal assessment. Springer.
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How to measure reasoning skills?

Santoro et al., 2018
I Current systems struggle on

apparently simple tasks,
especially when an abstract
concept needs to be discovered
and reapplied in a new setting.

A B C D

E F G H
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Santoro et al., 2018:
I Architectures based on standard pattern recognition

component.
I “Intepolation” of tasks is possible in some cases.
I “Extrapolation” is not possible yet. E.g. puzzles that contain

dark colored objects during training and light colored
objects during testing.
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Abstraction and Reasoning Corpus

I Need for a measure of intelligence in AI context.
I Guidelines for a benchmark: reproducible, should establish

validity, measure broad abilities and developer-aware
generalization, description of priors, among others.

I “Abstraction and Reasoning Corpus” (ARC)8.

8Chollet, F. (2019). On the measure of intelligence. arXiv preprint
arXiv:1911.01547.
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ARC data set
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ARC data set
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ARC data set
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ARC data set
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Conclusions

I Current ML approaches are based on existing pattern
recognition methods.

I To level up: Either rethink ML approach or introduce
primitives for reasoning into current architectures.

I Current research is working on narrow or simplified
problems. NN methods took 20+ years to go from simple
problems to solutions useful in the real world.

I Future application in mathematics education: student
modeling, companion for learning mathematical reasoning:
DGSs, but also in algebra, engineering, etc.

Recent Advances in Machine Learning for Mathematical Reasoning 25/25



References

References I

Arabshahi, F., Singh, S., & Anandkumar, A. (2018). Towards
solving differential equations through neural
programming.

Balacheff, N. (1993). Artificial intelligence and mathematics
education: Expectations and questions. In 14th biennal
of the australian association of mathematics teachers,
Perth, Australia.

Bansal, K., Loos, S. M., Rabe, M. N., Szegedy, C., & Wilcox, S.
(2019). HOList: An environment for machine learning of
higher-order theorem proving. ICML 2019. International
Conference on Machine Learning.

Chollet, F. (2019). On the measure of intelligence. arXiv preprint
arXiv:1911.01547.

Recent Advances in Machine Learning for Mathematical Reasoning 25/25



References

References II
Gauthier, T., & Kaliszyk, C. (2015). Premise selection and

external provers for HOL4. In Proceedings of the 2015
conference on certified programs and proofs. ACM.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems.
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